GC/MS analysis and antimicrobial activity of essential oils of Telekia speciosa (Schreb.) Baumg.
DOI: http://dx.doi.org/10.5937/leksir2141035C
Abstract
Telekia speciosa (Schreb.) Baumg., Asteraceae, is widespread in Eastern and Central Europe and the Balkan Peninsula. Previous phytochemical investigations have revealed T. speciosa as a rich source of sesquiterpene lactone – isoalantolactone, especially in its underground parts. The aim of the present study was to analyze the essential oils from aerial and underground parts of T. speciosa and investigate their antimicrobial activity. Chemical composition of essential oils was determined by GC-FID/MS method leading to the identification of 67 compounds in total, with 15.77 % oxygenated monoterpenes, 7.77 % sesquiterpene hydrocarbons, 49.14 % oxygenated sesquiterpenes, and 12.37 % other compounds from aerial parts, and 3.80 % oxygenated monoterpenes, 3.13 % sesquiterpene hydrocarbons, 90.33 % oxygenated sesquiterpenes from underground parts essential oil. The main components from aerial parts were (E)-nerolidol (11.54 %) and caryophyllene oxide (10.54 %), while isoalantolactone was the predominant component from essential oil underground parts (83.41 %). The minimum inhibitory concentration (MIC), minimum bactericidal/fungicidal concentration of the essential oils were evaluated against six strains of bacteria and two strains of fungus using in vitro microdilution method. Both oils presented antimicrobial properties against pathogens Staphylococcus aureus, Bacilus cereus, Pseudomonas aeruginosa, Escherichia coli, and Candida albicans. Inhibition of growth of tested microorganisms by T. speciosa underground parts essential oil was achieved with MICs ranging from 1.0 to 11.0 mg mL-1, while MICs of aerial parts essential oil varied from 4.0 to 30.0 mg mL-1. The obtained results contribute to the knowledge of antimicrobial properties of T. speciosa, which support traditional uses underground parts of the plant.
Keywords
Full Text:
PDFReferences
Braca, A., Siciliano, T., D’Arrigo, M., Germanò, M.P. (2008). Chemical composition and antimicrobial activity of Momordica charantia seed essential oil. Fitoterapia 79, 123–125. DOI: 10.1016/j.fitote.2007.11.002
Cazela, N.L., Glamoclija, J., Soković, M., Gonçalves, E.J., Linde, A.G., Colauto, B.N., and Gazim, C.Z. (2019). Antimicrobial Activity of Essential Oil of Baccharis dracunculifolia DC (Asteraceae) Aerial Parts at Flowering Period. Front. Plant Sci.10. doi: 10.3389/fpls.2019.00027
Chalchat, C.J., Maksimovic, Z. and Petrovic, S. (2004). Isoalantolactone, the principal constituent of the essential oil from underground parts of Telekia speciosa (Schreb.) Baumg., Asteraceae. Arh. farm. 1-2, 15-23.
Chan, W.K., Tan, L.T.H., Chan, K.G., Lee, L.H., and Goh, B.H. (2016). Nerolidol: A Sesquiterpene Alcohol with Multi-Faceted Pharmacological and Biological Activities. Review. Molecules. 21, 529. doi:10.3390/molecules21050529
Cilović, E., Brantner, A., Tran, T.H., Arsenijević, J., Maksimović, Z. (2019). Methanol Extracts and Volatiles of Telekia speciosa (Schreb.) Baumg. From Bosnia and Herzegovina. Technologica Acta 12(1), 9-13. DOI: 10.5281/zenodo.3268729
Deliorman D, Ergun F, Koyuncu M (2002). Sterols of Telekia speciosa. Chem. Nat. Compd. 38(2).
Domac, R. (1994). Flora Hrvatske – Priručnik za određivanje bilja. Zagreb, Školska knjiga.
European Pharmacopoeia (2010). 7th Edition. Ph. Eur. 7.0. Strasbourg: Council of Europe.
Filho, J.M.T.A., Araujo, L., C., Oliveira, A.P., Guimaraes, A.L., Pacheco, A.G.M., Silva, F.S., Cavalcanti, L.S., Lucchese, A.M., Almeida, J.R.G.S., Araujo, E.C.C. (2017). Chemical composition and antibacterial activity of essential oil from leaves of Croton heliotropiifolius in different seasons of the year. Rev Bras Farmacogn (Article in press) doi.org/10.1016/j.bjp.2017.02.004
Hada, T., Shiraishi, A., Furuse, S., Inoue, Y., Hamashima, H., Matsumoto, Y., Masuda, K., Shiojima, K., Shimada, J. (2003). Inhibitory effects of terpenes on the growth of Staphylococcus aureus. Nat. Med. 57, 64–67.
Kim, M., Song, K., Kim, Y.S. (2017). Alantolactone Improves Prolonged Exposure of Interleukin-6-Induced Skeletal Muscle Inflammation Associated Glucose Intolerance and Insulin Resistance. Front Pharmacol. 8, 405. DOI: 10.3389/fphar.2017.00405
Krist, S., Banovac, D., Tabanca, N., Wedge, E.D., Gochev, K.V., Wanner, J., Schmidt, E., and Jirovetz, L. (2015). Antimicrobial Activity of Nerolidol and its Derivatives against Airborne Microbes and Further Biological Activities. Nat. Prod. Commun. 10(1), 143-148
Liu, J., Yang, Z., Kong, Y., He, Y., Xu, Y., Cao, X. (2019). Antitumor activity of alantolactone in lung cancer cell lines NCI-H1299 and Anip 973. J. Food Biochem. 43(9). DOI: 10.1111/jfbc.12972
Liu YR, Cai QY, Gao YG, Luan X, Guan YY, Lu Q, Sun P, Zhao M, Fang C (2018). Alantolactone, a sesquiterpene lactone, inhibits breast cancer growth by antiangiogenic activity via blocking VEGFR2 signaling. Phytother. Res. 32(4), 643-650. DOI: 10.1002/ptr.6004
Marković, M., Matović, M., Pavlović, D., Zlatković, B., Marković, A., Jotić, B., and Jovanović, S.V. (2010). Resources of medical plants and herbs collector´s calendar of Pirot Country (Serbia). Biologica Nyssana 1(1-2), 9-21.
Nho, S.O., Jin, J.S., Kim, J.W., Oh, J.Y., Kim, J., Lee, Y.C., Seol, S.Y., Cho, D.T., Lee, J.C. (2008). Antimicrobial activity of Inula helenium L. essential oil against Gram–positive and Gram–negative bacteria and Candida spp. Int. J. Antimicrob. Agents. 31, 581-592.
Orhan, I. and Sener, B. (2003). Comparative fatty acid analysis of Telekia speciosa. Chem. Nat. Compd. 39(3), 244-245. DOI: 10.1023/A:1025410232754
Qiu, J., Luo, M., Wang, J., Dong, J., Li, H., Leng, B., Zhang, Q., Dai, X., Zhang, Y., Niu, X., Deng, X. (2011). Isoalantolactone protects against Staphylococcus aureus pneumonia. Microbiol. Lett. 324, 147-155. DOI: 10.1111/j.1574-6968.2011.02397.x
Redžić, S. (2007). The Ecological Aspect of Ethnobotany and Ethnopharmacology of Population in Bosnia and Herzegovina. Coll. Antropol. 31(3), 869-890.
Radulović, N., Blagojević, P., Palić, R. and Zlatković, B. (2010). Volatiles of Telekia speciosa (Schreb.) Baumg. (Asteraceae) from Serbia. J. Essent. Oil Res. 22, 250-254. DOI: 10.1080/10412905.2010.9700317
Rasul, A., Khan, M., Ali, M., Li, J., and Li, X. (2013). Targeting Apoptosis Pathways in Cancer with Alantolactone and Isoalantolactone. Sci. World J. 2013. doi.org/10.1155/2013/248532
Stojakowska A, Malarz J, Kisiel W (2011). Terpenoids from a multiple shoot culture of Telekia speciosa. Acta Soc. Bot. Pol. 80(3), 253-256. DOI: 10.5586/asbp.2011.019
Stojakowska A, Malarz J, Kisiel W (2015b). Quantitative analysis of sesquiterpene lactones and thymol derivatives in extracts from Telekia speciosa. Phytochem. Lett. 11, 378–383. DOI: 10.1016/j.phytol.2014.10.025
Stojakowska, A., Malarz, J., Zylewski, M., Kisiel, W. (2015a). Acylated hydroxycinnamic acid glucosides from flowers of Telekia speciosa. Phytochem. Lett. 12, 257-261. doi.org/10.1016/j.phytol.2015.04.010
Stojanović, R.Z., Čomić, Lj., Radulović, N., Blagojević, P., Denić, M., Miltojević, A., Rajković, J., and Mihajilov, K.T. (2012). Antistaphylococcal activity of Inula helenium L. root essential oil: eudesmane sesquiterpene lactones induce cell membrane damage. Eur. J. Clin. Microbiol. Infect. Dis. 31, 1015-1025. DOI: 10.1007/s10096-011-1400-1
Swamy, K.M., Akhtar, S.M., and Sinniah, R.U. (2016). Antimicrobial Properties of Plant Essential Oils against Human Pathogens and Their Mode of Action: An Updated Review. Evid. Based Complement. Alternat. Med. 2016. DOI: 10.1155/2016/3012462
Tsukatani, T., Suenaga, H., Shiga, M., Noguchi, K., Ishiyama, M., Ezoe, T., et al. (2012). Comparison of the WST-8 colorimetric method and the CLSI broth microdilution method for susceptibility testing against drugresistant bacteria. J. Microbiol. Methods. 90, 160–166. DOI: 10.1016/j.mimet.2012.05.001
Wajs-Bonikowska, A., Stojakowska, A., Kalemba, D. (2012). Chemical Composition of Essential Oils from a Multiple Shoot Culture of Telekia speciosa and Different Plant Organs. Nat. Prod. Commun. 7(5), 625-628.
Yuan, C.B., Tian, L., Yang, B., Zhou, H.Y. (2018). Isoalantolactone protects LPS-induced acute lung injury through Nrf2 activation. Microb. Pathog. 123, 213-218. DOI: 10.1016/j.micpath.2018.07.010
Zhou, Y., Guo, Y., Wen Z., Ci, X., Xia, L., Wang, Y., Deng X., and Wang, J. (2020). Isoalantolactone Enhances the Antimicrobial Activity of Penicillin G against Staphylococcus aureus by Inactivating β-lactamase during Protein Translation. Pathogens 9(161). DOI:10.3390/pathogens9030161
Refbacks
- There are currently no refbacks.
Copyright (c) 2021 Ermina Cilović Kozarević
ISSN 0455-6224 (Print)
ISSN 2560-3965 (Online)
Except where otherwise noted, the content on this site is licensed under a Creative Commons Attribution 4.0 International License.