Water soluble biomolecules from Nepeta nuda regulate microbial growth: A case study of apple juice preservation

Uroš Gašić, Dejan Stojković, Marija Ivanov, Milica Miletić, Danijela Mišić, Milan Veljić, Marina Soković

Abstract


The following study was designed to explore antimicrobial properties of the by-product obtained in a hydro-distillation process of essential oil from Nepeta nuda L. Based on the obtained decoction of N. nuda and apple juice, we strived to develop a novel drink that would have antimicrobial self-preserving properties. By using 96-well plate microdilution assay it was shown that the N. nuda decoction has antimicrobial potential towards 8 bacterial and 6 fungal species, with the range of minimal inhibitory concentrations 10 mg/mL - 300 mg/mL. By using actual food system, such as apple juice, in combination with and without short thermal treatment, we have shown that the decoction of N. nuda can inhibit the growth of food contaminant fungus Penicillium aurantiogriseum. It was determined that 3 volumes of decoction (500 mg/mL) and 22 volumes of apple juice should be mixed in order to obtain self-preserving drink resistant to P. aurantiogriseum contamination. Likewise, when thermal treatment (80 °C for 10s) is included, self-preserving mixture of decoction and apple juice should be made in volume ratios 3:47, respectively. The designed product maintained the pleasant taste as determined by panelists during the sensorial evaluation. Chemical investigations (UHPLC–Orbitrap MS analysis) of N. nuda decoction showed that the most abundant compound was 1,5,9-epideoxyloganic acid (0.410 mg/g of dried decoction). Since N. nuda is traditionally used as a tea, we presented the novel formulation of the antimicrobial self-preserving drink based on the N. nuda decoction and apple juice.

Keywords


Nepeta nuda L; Drink; Antifungal; Self-preserving; Chemical composition

Full Text:

PDF

References


Aneja, K. R., Dhiman, R., Aggarwal, N. K., Aneja, A. (2014). Emerging preservation techniques for controlling spoilage and pathogenic microorganisms in fruit juices, International Journal of Microbiology 2014: Article ID 758942. https://doi.org/10.1155/2014/758942

Aničić, N., Gašić, U., Lu, F., Ćirić, A., Ivanov, M., Jevtić, B., Dimitrijević, M., Anđelković, B., Skorić, M., Nestorović Živković, J., Mao, Y., Liu, J., Tang, C., Soković, M., Ye, Y., Mišić, D. (2021). Antimicrobial and Immunomodulating Activities of Two Endemic Nepeta Species and Their Major Iridoids Isolated from Natural Sources, Pharmaceuticals 14(5): 414. https://doi.org/10.3390/ph14050414

Aras, A., Bursal, E., Dogru, M. (2016). UHPLC-ESI-MS/MS analyses for quantification of phenolic compounds of Nepeta nuda subsp. lydiae. Journal of Applied Pharmaceutical Science 6(11): 9–13. https://doi.org/10.7324/JAPS.2016.601102

Asgarpanah, J., Sarabian, S., Ziarati, P. (2014). Essential oil of Nepeta genus (Lamiaceae) from Iran: a review, Journal of Essential Oil Research 26(1): 1–12. https://doi.org/10.1080/10412905.2013.851040

Batiha, G. E.-S., Beshbishy, A. M., Ikram, M., Mulla, Z. S., El-Hack, M. E. A., Taha, A. E., Algammal, A. M., Elewa, Y. H. A. (2020). The Pharmacological Activity, Biochemical Properties, and Pharmacokinetics of the Major Natural Polyphenolic Flavonoid: Quercetin, Foods 9(3): 374. https://doi.org/10.3390/foods9030374

Daouk, K. D., Dagher, M. S., Sattout, J. E. (1995). Antifungal activity of the essential oil of Origanum syriacum L., Journal of Food Protection 58(10): 1147–1149. https://doi.org/10.4315/0362-028X-58.10.1147

Dienaite, L., Pukalskiene, M., Matias, A. A., Pereira, C. V., Pukalskas, A., Venskutonis, P. R. (2018). Valorization of six Nepeta species by assessing the antioxidant potential phytochemical composition and bioactivity of their extracts in cell cultures, Journal of Functional Foods, 45: 512–522. https://doi.org/10.1016/j.jff.2018.04.004

Espinel-Ingroff, A. (2001). A comparasion of the E-test with the NCCLS M38-P method for antifungal susceptibility testing of common and emerging pathogenic filamentous fungi, Journal of Clinical Microbiology 39(4): 1360–1367. https://doi.org/10.1128/JCM.39.4.1360-1367.2001

Fiolet, T., Srour, B., Sellem, L., Kesse-Guyot, E., Alles, B., Mejean, C., Deschasaux, M., Fassier, P., Latino-Martel, P., Beslay, M., Hercberg, S., Lavalette, C., Monteiro, C. A., Julia, C., Touvier, M. (2018). Consumption of ultra-processed foods and cancer risk: Results from NutriNet-Sante prospective cohort, British Medical Journal 360: k322. https://doi.org/10.1136/bmj.k322

Gašić, U., Natić, M., Mišić, D., Lušić, D., Milojković-Opsenica, D., Tešić, Ž., Lušić, D. (2015). Chemical markers for the authentication of unifloral Salvia officinalis L. honey, Journal of Food Composition and Analysis 44: 128–138. https://doi.org/10.1016/j.jfca.2015.08.008

Gayán, E., Serrano, M. J., Monfort, S., Álvarez, I., Condón, S. (2013). Pasteurization of apple juice contaminated with Escherichia coli by a combined UV–mild temperature treatment, Food and Bioprocess Technology 6(11): 3006–3016. https://doi.org/10.1007/s11947-012-0937-z

Gormez, A., Bozari, S., Yanmis, D., Gulluce, M., Agar, G., Sahin, F. (2013). Antibacterial activity and chemical composition of essential oil obtained from Nepeta nuda against phytopathogenic bacteria, Journal of Essential Oil Research 25(2): 149–153. https://doi.org/10.1080/10412905.2012.751060

Heinz, V., Toepfl, S., Knorr, D. (2003). Impact of temperature on lethality and energy efficiency of apple juice pasteurization by pulsed electric fields treatment, Innovative Food Science and Emerging Technologies 4(2): 167–175. https://doi.org/10.1016/S1466-8564(03)00017-1

Jamila, N., Ullah, R., Alwahsh, M. A. A., Haider, S., Wong, K. C., Ullah, Z. (2011). Secondary metabolites from Nepeta juncea, African Journal of Biotechnology 10(77): 17884–17886. https://doi.org/10.5897/AJB11.1447

Keyser, M., Műller, I. A., Cilliers, F. P., Nel, W., Gouws, P. A. (2008). Ultraviolet radiation as a non-thermal treatment for the inactivation of microorganisms in fruit juice, Innovative Food Science and Emerging Technologies 9(3): 348–354. https://doi.org/10.1016/j.ifset.2007.09.002

Kozuharova, E., Benbassat, N., Getov, I. (2014). Ethnobotanical records of not yet documented therapeutic effects of some popular Bulgarian medicinal plants, Emirates Journal of Food and Agriculture 26(): 647–651. https://doi.org/10.9755/ejfa.v26i7.18200

Li, Z., Guo, X., Cao, Z., Liu, X., Liao, X., Huang, C., Xu, W., Liu, L., Yang, P. (2018). New MS network analysis pattern for the rapid identification of constituents from traditional Chinese medicine prescription Lishukang capsules in vitro and in vivo based on UHPLC/Q-TOF-MS, Talanta 189: 606–621. https://doi.org/10.1016/j.talanta.2018.07.020

Magnani, C., Isaac, V. L. B., Correa, M. A., Salgado, H. R. N. (2014). Caffeic acid: a review of its potential use in medications and cosmetics, Analytical Methods 6(10): 3203–3210. https://doi.org/10.1039/C3AY41807C

Mišić, D., Šiler, B., Gašić, U., Avramov, S., Živković, S., Živković Nestorović, J., Milutinović, M., Tešić, Ž. (2015). Simultaneous UHPLC/DAD/(+/-)HESI-MS/MS analysis of phenolic acids and nepetalactones in methanol extracts of Nepeta species: A possible application in chemotaxonomic studies, Phytochemical Analysis 26(1): 72–85. https://doi.org/10.1002/pca.2538

Nadeem, M., Imran, M., Aslam Gondal, T., Imran, A., Shahbaz, M., Muhammad Amir, R., Wasim Sajid, M., Batool Qaisrani, T., Atif, M., Hussain, G., Salehi, B., Adrian Ostrander, E., Martorell, M., Sharifi-Rad, J., Cho, W. C., Martins, N. (2019). Therapeutic Potential of Rosmarinic Acid: A Comprehensive Review, Applied Science 9(15): 3139. https://doi.org/10.3390/app9153139

Pacifico, S., Galasso, S., Piccolella, S., Kretschmer, N., Pan, S. P., Marciano, S., Bauer, R., Monaco, P. (2015). Seasonal variation in phenolic composition and antioxidant and anti-inflammatory activities of Calamintha nepeta (L.) Savi, Food Research International 69: 121–132. https://doi.org/10.1016/j.foodres.2014.12.019

Reis, F. S., Stojković, D., Soković, M., Glamočlija, J., Ćirić, A., Barros, L., Ferreira, I. C. F. R. (2012). Chemical characterization of Agaricus bohusii, antioxidant potential and antifungal preserving properties when incorporated in cream cheese, Food Research International 48(2): 620–626. https://doi.org/10.1016/j.foodres.2012.06.013

Salehi, B., Valussi, M., Jugran, A. K., Martorell, M., Ramírez-Alarcón, K., Stojanović-Radić, Z. Z., Antolak, H., Kręgiel, D., Mileski, K. S., Sharifi-Rad, M., Setzer, W. N., de la Luz Cádiz-Gurrea, M., Segura-Carretero, A., Şener, B., Sharifi-Rad, J. (2018). Nepeta species: From farm to food applications and phytotherapy, Trends in Food Science & Technology 80: 104–122. https://doi.org/10.1016/j.tifs.2018.07.030

Sarikurkcu, C., Eskici, M., Karanfil, A., Tepe, B. (2019). Phenolic profile, enzyme inhibitory and antioxidant activities of two endemic Nepeta species: Nepeta nuda subsp. glandulifera and N. cadmea. South African Journal of Botany 120: 298–301. https://doi.org/10.1016/j.sajb.2018.09.008

Sharma, A., Cooper, R., Bhardwaj, G., Cannoo, D. S. (2021). The genus Nepeta: Traditional uses, phytochemicals and pharmacological properties, Journal of Ethnopharmacology 268(2): 113679. https://doi.org/10.1016/j.jep.2020.113679

Smiljković, M., Dias, M. I., Stojković, D., Barros, L., Bukvički, D., Ferreira, I. C. F. R., Soković, M. (2018). Characterization of phenolic compounds in tincture of edible Nepeta nuda: development of antimicrobial mouthwash, Food & Function 9(10): 5417–5425. https://doi.org/10.1039/C8FO01466C

Snook, M. E., Blum, M. S., Whitman, D. W., Arrendale, R. F., Costello, C. E., Harwood, J. S. (1993). Caffeoyltartronic acid from catnip (Nepeta cataria): a precursor for catechol inlubber grasshopper (Romalea guttata) defensive secretions, Journal of Chemical Ecology 19(9): 1957– https://doi.org/1966. 10.1007/BF00983799

Süntar, I., Nabavi, S. M., Barreca, D., Fischer, N., Efferth, T. (2018). Pharmacological and chemical features of Nepeta L. genus: Its importance as a therapeutic agent, Phytotherapy Research 32(2): 185–198. https://doi.org/10.1002/ptr.5946

Takeda, Y., Morimoto, Y., Matsumoto, T., Honda, G., Tabata, M., Fujita, T., Otsuka, H., Sezik, E., Yesilada, E. (1995). Nepetanudoside, an iridoid glucoside with an unusual stereostructure from Nepeta nuda ssp. albiflora, Journal of Natural Products 58(8): 1217–1221. https://doi.org/10.1021/np50122a009

Takeda, Y., Yagi, T., Matsumoto, T., Honda, G., Tabata, M., Fujita, T., Shingu, T., Otsuka, H., Sezik, E., Yesilada, E. (1996). Nepetanudosides and iridoid glucosides having novel stereochemistry from Nepeta nuda ssp. albiflora, Phytochemistry 42(4): 1085–1088. https://doi.org/10.1016/0031-9422(96)00074-X

Tsukatani, T., Suenaga, H., Shiga, M., Noguchi, K., Ishiyama, M., Ezoe, T., Matsumoto, K. (2012). Comparison of the WST-8 colorimetric method and the CLSI broth microdilution method for susceptibility testing against drug-resistant bacteria, Journal of Microbiological Methods 90(3): 160–166. https://doi.org/10.1016/j.mimet.2012.05.001

Vasić, V., Gašić, U., Stanković, D., Lušić, D., Vukić-Lušić, D., Milojković-Opsenica, D., Tešić, Ž., Trifković, J. (2019). Towards better quality criteria of European honeydew honey: phenolic profile and antioxidant capacity, Food Chemistry 274: 629–641. https://doi.org/10.1016/j.foodchem.2018.09.045

Wareing, P. and Davenport, R. R., (2005). Microbiology of soft drinks and fruit juices, in: Jones, B.S., Ashurst, P. R. (Ed.), Chemistry and Technology of Soft Drinks and Fruit Juices, Second Edition. Blackwell Publishing, London, UK, pp. 279–299. https://doi.org/10.1002/9780470995822.ch11


Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 Uroš Gašić, Dejan Stojković, Marija Ivanov, Milica Miletić, Danijela Mišić, Milan Veljić, Marina Soković



ISSN 0455-6224 (Print)
ISSN 2560-3965 (Online)

Creative Commons License Except where otherwise noted, the content on this site is licensed under a Creative Commons Attribution 4.0 International License.