Effect of carrier type on the spray-dried willowherb (Epilobium angustifolium L.) leaves extract, powder properties and bioactive compounds encapsulation

Miloš Jovanović, Zorica Drinić, Dubravka Bigović, Gordana Zdunić, Jelena Mudrić, Katarina Šavikin

DOI: http://dx.doi.org/10.5937/leksir2141041J


Willowherb (Epilobium angustifolium L.) leaves are a valuable source of polyphenolic compounds (phenolic acids, flavonoids, and ellagitannins) that are mainly used in the treatment of benign prostatic hyperplasia. In the presented study, the impacts of maltodextrin and whey protein as carriers on the efficiency of spray drying and physicochemical properties of the obtained powders were examined. The use of carriers significantly improved the drying yield (over 60 %). Moisture content, hygroscopicity, and rehydration time of all dried extracts (without the carrier, with maltodextrin and whey protein) were at an acceptable level, while their flowability and cohesiveness were poor. The encapsulation efficiency of polyphenols in a whey protein carrier of 92.02 % was significantly higher compared to 75.80 % for maltodextrin. These results show that whey protein efficiently encloses the extract ingredients into powder particles and thus preserves sensitive phenolic compounds during the drying process. The efficacy of flavonoid encapsulation was also high (93.00 % for maltodextrin and 94.34 % for whey protein), with no statistically significant differences between carrier types. Therefore, willowherb leaves extract can be successfully encapsulated by spray drying using maltodextrin and whey protein as carriers.


Epilobium angustifolium; willowherb; microencapsulation; wall materials; spray dry; phenolics

Full Text:



Granica, S., Piwowarski, J. P., Czerwińska, M. E. and Kiss, A. K. (2014). Phytochemistry, pharmacology and traditional uses of different Epilobium species (Onagraceae): a review, Journal of Ethnopharmacology 156: 316-46. doi: 10.1016/j.jep.2014.08.036.

Schepetkin, I. A., Ramstead, A. G., Kirpotina, L. N., Voyich, J. M., Jutila, M. A. and Quinn, M. T. (2016). Therapeutic Potential of Polyphenols from Epilobium Angustifolium (Fireweed), Phytotherapy Research 30(8): 1287-1297. doi: 10.1002/ptr.5648.

Shikov, A. N., Poltanov, E. A., Dorman, H. J., Makarov, V. G., Tikhonov, V. P. and Hiltunen, R. (2006). Chemical composition and in vitro antioxidant evaluation of commercial water-soluble willow herb (Epilobium angustifolium L.) extracts, Journal of Agricultural and Food Chemistry 54(10): 3617-3624. doi: 10.1021/jf052606i.

Sõukand, R., Mattalia, G., Kolosova, V., Stryamets, N., Prakofjewa, J., Belichenko, O., Kuznetsova, N., Minuzzi, S., Keedus, L., Prūse, B., Simanova, A., Ippolitova, A. and Kalle, R. (2020). Inventing a herbal tradition: The complex roots of the current popularity of Epilobium angustifolium in Eastern Europe, Journal of Ethnopharmacology 247: 112254. doi: 10.1016/j.jep.2019.112254.

Esposito, C., Santarcangelo, C., Masselli, R., Buonomo, G., Nicotra, G., Insolia, V., D'Avino, M., Caruso, G., Buonomo, A. R., Sacchi, R., Sommella, E., Campiglia, P., Tenore, G. C. and Daglia, M. (2021). Epilobium angustifolium L. extract with high content in oenothein B on benign prostatic hyperplasia: A monocentric, randomized, double-blind, placebo-controlled clinical trial, Biomedicine and Pharmacotherapy 138: 111414. doi: 10.1016/j.biopha.2021.111414.

Hevesi Tóth, B., Blazics, B. and Kéry, A. (2009). Polyphenol composition and antioxidant capacity of Epilobium species, Journal of Pharmaceutical and Biomedical Analysis 49(1): 26-31. doi: 10.1016/j.jpba.2008.09.047.

Stolarczyk, M., Piwowarski, J. P., Granica, S., Stefańska, J., Naruszewicz, M. and Kiss, A. K. (2013). Extracts from Epilobium sp. herbs, their components and gut microbiota metabolites of Epilobium ellagitannins, urolithins, inhibit hormone-dependent prostate cancer cells-(LNCaP) proliferation and PSA secretion, Phytotherapy Research 27(12): 1842-1848. doi: 10.1002/ptr.4941.

Ćujić Nikolić, N., Stanisavljevič, N., Šavikin, K., Kalušević, A., Nedović, V., Bigović, D. and Janković, T. (2018). Application of gum Arabic in the production of spray-dried chokeberry polyphenols, microparticles characterisation and in vitro digestion method, Lekovite Sirovine 38: 9-16. http://dx.doi.org/10.1364/leksir1838009C.

Bakowska-Barczak, A. M. and Kolodziejczyk, P. P. (2011). Black currant polyphenols: Their storage stability and microencapsulation, Industrial Crops and Products 34(2): 1301-1309. https://doi.org/10.1016/j.indcrop.2010.10.002.

Ballesteros, L. F., Ramirez, M. J., Orrego, C. E., Teixeira, J. A. and Mussatto, S. I. (2017). Encapsulation of antioxidant phenolic compounds extracted from spent coffee grounds by freeze-drying and spray-drying using different coating materials, Food Chemistry 237: 623-631. doi: 10.1016/j.foodchem.2017.05.142.

Mahdi, A. A., Mohammed, J. K., Al-Ansi, W., Ghaleb, A. D. S., Al-Maqtari, Q. A., Ma, M., Ahmed, M. I. and Wang, H. (2020). Microencapsulation of fingered citron extract with gum arabic, modified starch, whey protein, and maltodextrin using spray drying, International Journal of Biological Macromolecules 152: 1125-1134. doi: 10.1016/j.ijbiomac.2019.10.201.

Chaumun, M., Goëlo, V., Ribeiro, A. M., Rocha, F. and Estevinho, B. N. (2020). In vitro evaluation of microparticles with Laurus nobilis L. extract prepared by spray-drying for application in food and pharmaceutical products, Food and Bioproducts Processing 122: 124-135. https://doi.org/10.1016/j.fbp.2020.04.011.

Jinapong, N., Suphantharika, M. and Jamnong, P. (2008). Production of instant soymilk powders by ultrafiltration, spray drying and fluidized bed agglomeration, Journal of Food Engineering 84: 194–205. doi:10.1016/j.jfoodeng.2007.04.032.

Carr, R. L. (1965). Evaluating flow properties of solids, Chemical Engineering 72: 163-168.

Hausner, H. H. (1967). Friction conditions in a mass of metal powder, International Journal of Powder Metallurgy 3(4): 7-13.

Goula, A. M. and Adamopoulos, K. G. (2010). A new technique for spray drying orange juice concentrate, Innovative Food Science and Emerging Technologies 11(2): 342-351. https://doi.org/10.1016/j.ifset.2009.12.001.

Cai, Y. Z. and Corke, H. (2000). Production and properties of spray dried Amaranthus Betacyanin pigments, Journal of Food Science 65: 1248-1252. https://doi.org/10.1111/j.13652621.2000.tb10273.x.

Loizzo, M., Tundis, R., Bonesi, M., Menichini, F., Mastellone, V., Avallone, L. and Menichini, F. (2012). Radical scavenging, antioxidant and metal chelating activities of Annona cherimola Mill. (cherimoya) peel and pulp in relation to their total phenolic and total flavonoid contents, Journal of Food Composition and Analysis 25: 179-184. https://doi.org/10.1016/j.jfca.2011.09.002.

Waterman, P. G. and Mole, S. (1994). Analysis of phenolic plant metabolites. Blackwell Scientific Publication, Oxford.

Díaz-Bandera, D., Villanueva-Carvajal, A., Dublán-García, O., Quintero-Salazar, B. and Dominguez-Lopez, A. (2015). Assessing release kinetics and dissolution of spray-dried Roselle (Hibiscus sabdariffa L.) extract encapsulated with different carrier agents, LWT - Food Science and Technology 64(2): 693-698. https://doi.org/10.1016/j.lwt.2015.06.047.

Vidović, S. S., Vladić, J. Z., Vaštag, Ž. G., Zeković, Z. P. and Popović, Lj. M. (2014). Maltodextrin as a carrier of health benefit compounds in Satureja montana dry powder extract obtained by spray drying technique, Powder Technology 258: 209-215. https://doi.org/10.1016/j.powtec.2014.03.038.

Morais, F. P. R., Pessato, T. B., Rodrigues, E., Mallmann, L. P., Mariutti, L. R. B. and Netto, F. (2020). Whey protein and phenolic compound complexation: Effects on antioxidant capacity before and after in vitro digestion, Food Research International 133: 109104. https://doi.org/10.1016/j.foodres.2020.109104.

Caliskan, G. and Nur Dirim, S. (2015). The effect of different drying processes and the amounts of maltodextrin addition on the powder properties of sumac extract powder, Powder Technology 287: 308-314. https://doi.org/10.1016/j.powtec.2015.10.019.

Tontul, I. and Topuz, A. (2017). Spray-drying of fruit and vegetable juices: Effect of drying conditions on the product yield and physical properties, Trends in Food Science and Technology 63: 91-102. https://doi.org/10.1016/j.tifs.2017.03.009.

Hogekamp, S. and Schubert, H. (2003). Rehydration of Food Powders, Food Science and Technology International 9(3): 223-235. doi:10.1177/1082013203034938.


  • There are currently no refbacks.

Copyright (c) 2021 Miloš Jovanović, Zorica Drinić, Dubravka Bigović, Gordana Zdunić, Jelena Mudrić, Katarina Šavikin

ISSN 0455-6224 (Print)
ISSN 2560-3965 (Online)

Creative Commons License Except where otherwise noted, the content on this site is licensed under a Creative Commons Attribution 4.0 International License.