Fungi an source with huge potential for “mushroom pharmaceuticals”

Jasmina Glamočlija, Marina Sokovic




Mushrooms for ages have been used by humans, not only as a source of food, but medicinal resources as well. They were used as a part of traditional medicine, first of all in the civilizations of the East and recentlly in Western civilizations. The mushrooms constitute 16,000 species worldwide with more than 2000 species identified as safe. Among these mushrooms, 1000 are edible, while others have been used as a source of biofuel, in medicinal formulation, as biochemicals, and for other purposes. Mushrooms have also huge potential, such as a “mushroom pharmaceuticals” wuth 130 medicinal  functions. Therefore, they have been considered as potential source of antioxidant, antitumor, antiviral, antimicrobial, and immunomodulatory agents. This review focuses on the antimicrobial and analgetic activities of some medicinal mushrooms.


fungi, medicinal mushrooms, edible mushrroms, antibacterial, antifungal, analgetic activities

Full Text:



Alves, M. J., Ferreira, I.C.F.R., Martins, A. and Pintado., M. (2012a). Antimicrobial Activity of Wild Mushroom Extracts against Clinical Isolates Resistant to Different Antibiotics, Journal of Applied Microbiology, 113 (2): 466–475.

Alves, M., Ferreira, I.C.F.R., Dias, J., Teixeira, V., Martins, A. and Pintado, M. (2012b). A Review on Antimicrobial Activity of Mushroom (Basidiomycetes) Extracts and Isolated Compounds, Planta Medica, 78 (16):1707-1718.

Alves, M.J., Ferreira, I.C.F.R., Dias, J., Teixeira, V. and Martins, A. (2013). A Review on Antifungal Activity of Mushroom Extracts and Isolated Compounds, Current Topics in Medicinal Chemistry, 13 (21): 2648–2659.

Ameri, A., Vaidya, J.G. and Deokule, S.S. (2011). In vitro evaluation of antistaphylococcal activity of Ganoderma lucidum, Ganoderma praelongum and Ganoderma resinaceum from Pune, India, African Journal of Microbiological Research, 5(3):328–333.

Baggio, C.H., Freitas, C.S., Marcon, R., de Paula Wernera, M.F., Rae, G.A., Smiderle, F.R., Sassaki, L.G. Iacomini, M., Marques, M.C.A. and, Santos, A.R.S. (2012). Antinociception of β-d-glucan from Pleurotus pulmonarius is possibly related to protein kinase C inhibition, International Journal of Biological Macromolecules, 50(3):872–877.

Baggio, C.H., Freitas, C.S., Martins, D.F., Mazzardo, L., Smiderle, F.R., Sassaki, G.L., Lacomini, M., Marques, M.C.A. and Santos, A.R.S. (2010). Antinociceptive effects of (1/3), (1/6)-linked β-glucan isolated from Pleurotus pulmonarius in models of acute and neuropathic pain in mice: evidence for a role for glutamatergic receptors and cytokine pathways, Journal of Pain, 11(10):965–971.

Barros, L., Calhelha, R.C., Vaz, J.A., Ferreira I.C.F.R., Baptista, P. and Estevinho, L.M. (2007). Antimicrobial activity and bioactive compounds of Portuguese wild edible mushrooms methanolic extracts, European Food Research and Technology, 225:151–156.

Baumgartner, K., Fujiyoshi, P., Foster, G.D. and Bailey, A.M. (2010). Agrobacterium tumefa- ciens-mediated transformation for investigation of somatic recombination in the fungal pathogen Armillaria mellea, Applied and Environmental Microbiology 76: 7990–7996.

Blackwell, M. (2011). The fungi: 1, 2, 3 …5.1 million species? American Journal of Botany, 98:426‑38.

Bohnert, M., Nützmann, H.W., Schroeckh, V., Horn, F., Dahse, H.M., Brakhage, A.A. and Hoffmeister, D. (2014). Cytotoxic and antifungal activities of melleolide antibiotics follow dissimilar structure-activity relationships, Phytochemistry 105: 101–108.

Bryden, W.L. (2012). Mycotoxin contamination of the feed supply chain: Implications for animal productivity and feed security, Animal Feed Science and Technology, 173, 134-158.

Chu, K. T., Xia, L. and Ng, T. B. (2005). Pleurostrin, an antifungal peptide from the oyster mushroom, Peptides, 26: 2098-2103.

Centko, R.M., Ramón-García, R., Taylor, T., Patrick, B.O., Thompson,

C.J., Miao, V.P. and Andersen, R.J. (2012). Ramariolides A–D, antimycobacterial butenolides isolated from the mushroom Ramaria cystidiophora, Journal of Natural Product 75:2178–2182.

Chang, S.T. and Miles, P. (2004). Mushrooms. 2nd Edition, CRC Press LLC..

Chang ST and Wasser SP. (2012). The role of culinary-medicinal mushrooms on human welfare with pyramid model for human health, International Journal of Medicinal Mushrooms, 14(2): 95–134.

Cheung, P. (2010). The nutritional and health benefits of mushrooms, Nutrition Bulltin, 35: 292–299.

De Silva, D.D., Rapior, S., Sudarman, E., Stadler, M., Xu, J., Alias, S.A. and Hyde, K.D. (2013). Bioactive metabolites from macrofungi: ethnopharmacology, biological activities and chemistry, Fungal Diversity 62: 1–40.

Fan, L., Pan, H., Soccol, T.A., Pandey, A. and Soccol, C.R. (2006). Advances in mushroom research in the last decade, Food Technology and Biotechnology, 44(3): 303–311.

Gargano, M. L., van Griensven, L. J. L. D., Isikhuemhen, O. S., Lindequist, U., Venturella, G., Wasser, S. P. and Zervakis, G. I. (2017). Medicinal mushrooms: Valuable biological resources of high exploitation potential, Plant Biosystems 151: 548–565.

Giri, S., Biswas, G., Pradhan, P., Mandal, S.C. and Acharya, K. (2012). Antimicrobial Activities Of Basidiocarps Of Wild Edible Mushrooms Of West Bengal , India 4, 1554–1560.

Glamočlija, J., Stojković, D., Nikolić, M., Ćirić, A., Reis, F.S., Barros, L., Ferreira, I.C.F.R. and Soković, M.,(2015). A comparative study on edible Agaricus mushrooms as functional foods, Food and Function 6: 1900–1910.

Havlickova, B., Czaika, V.A. and Friedrich, M. (2008). Epidemiological trends in skin mycoses worldwide, Mycoses, 51: 2-15.

Harikrishnan, R., Balasundaram, C. and Heo, M.S. (2011). Diet enriched with mushroom Phellinus linteus extract enhances the growth, innate immune response, and disease resistance of kelp grouper, Epinephelus bruneus against vibriosis, Fish Shellfish Immunology 30(1):128–134

Harikrishnan, R., Balasundaram, C. and Heo, M.S. (2012). Effect of Inonotus obliquus enriched diet on hematology, immune response, and disease protection in kelp grouper, Epinephelus bruneus against Vibrio harveyi, Aquaculture, 344–349:48–53.

Hearst, R., Nelson, D., McCollum, G., Millar, B. C., Maeda, Y., Goldsmith, C. E., Rooney, P. J., Loughrey, A., Rao, J. R. and Moore, J. E. (2009). An examination of antibacterial and antifungal properties of constituents of Shiitake (Lentinula edodes) and oyster (Pleurotus ostreatus) mushrooms, Complementary Therapies in Clinical Practice, 15: 5–7.

Heleno, S. A., Ferreira, I.C.F.R., Esteves, P. A ., Ćirić, A., Glamočlija, J., Martins, A., Soković, M. and Queiroz, M.J. (2013a). Antimicrobial activity of Ganoderma lucidum extract, p-hydroxybenzoic and cinnamic avids and their synthetic acetlated glucoronide methyl esters. Food and Chemical Toxicology, 58, 95-100.

Heleno, S.A., Stojković, D., Barros, L., Glamočlija, J., Soković, M., Martins, A., Queiroz, M.J.R.P. and Ferreira, I.C.F.R. (2013b). A comparative study of chemical composition, antioxidant and antimicrobial properties of Morchella esculenta (L.) Pers. from Portugal and Serbia, Food Research International, 51: 236–243.

Hu, Y.L. and Xue, F.Q, (2012). Cordyceps militaris polysaccharides can enhance the immunity and antioxidation activity in immunosuppressed mice, Carbohydrate Polymers 89: 461–466.

Hur, J.M., Yang, C.H., Han, S.H., Lee, S.H., You, Y.O., Park, J.C. and Kim, K.J. (2004). Antibacterial effect of Phellinus linteus against methicillin-resistant Staphylococcus aureus. Fitoterapia, 75: 603-605.

Jagadish, L. K., Krishnan, V. V., Shenbhagaraman, R. and Kaviyarasan, V. (2009). Comparative study on the antioxidant, anticancer and antimicrobial property of Agaricus bisporus (J. E. Lange) imbach before and after boiling, African Journal of Biotechnology, 8, 654–661.

Johansson, M., Sterner, O., Labischinski, H and Anke, T. (2001. Coprinol, a new antibiotic cuparane from a Coprinus species, Zeitschrift für Naturforschung C, 56(1– 2):31–34.

Karaman, M., Kaisarevic, S., Somborski, J., Kebert, M. and Matavulj, M. (2009). Biological

activities of the lignicolous fungus Meripilus giganteus (Pers.: Pers) Karst. Archive of

Biological Sciences, 61: 853-861.

Karaman, M., Jovin, E., Malbaša, R., Matavuly, M. and Popovic, M. (2010). Medicinal and edible lignicolous fungi as natural sources of antioxidative and antibacterial agents, Phytotherapy Research, 24: 1473–1481.

Karaman, M., Matavulj, M. and Janjic, Lj. (2012). Antibacterial Agents from Lignicolous Macrofungi. Antimicrobial agents in Biochemistry, Genetics and Molecular Biology, Varaprasad Bobbarala (Ed.), InTech,

Karaman, M., Stahl, M., Vulić, J., Vesić, M. and Canadanović-Brunet, J. (2014). Wild-Growing Lignicolous Mushroom Species as Sources of Novel Agents with Antioxidative and Antibacterial Potentials. International Journal of Food Sciences and Nutrition, 65, (3): 311–19.

Kim, S.P., Moon, E., Nam, S.H. and Friedman, M. (2012). Hericium erinaceus mushroom extracts protect infected mice against Salmonella typhimurium-induced liver damage and mortality by stimulation of innate immune cells, Journal of Agricultural and Food Chemistry, 60 (22):5590–5596.

Kirk, P.M., Cannon, P.F., David, J.C. amd Stalpers, J.A. (2008). Ainsworth & Bisby’s Dictionary of the Fungi. 10th edn. CAB International, Wallingford, UK.

Komuraa, D.L., Carbonerob, E.R., Grachera, A.H.P., Baggio, C.H., Freitas, C.S. and Marcon, R. (2010). Structure of Agaricus spp. fucogalactans and their anti-inflammatory and antino¬ciceptive properties, Bioresource Technology 101(15):6192–6199.

Kostić, M., Smiljković, M., Petrović, J., Glamočilija, J., Barros, L., Ferreira, I. C. F. R., Ćirić, A. and Soković, M. (2017). Chemical, nutritive composition and wide-broad bioactive properties of honey mushroom Armillaria mellea (Vahl: Fr.) Kummer, Food and Function, 38:3239-3249.

Lindequist, U., Timo, H., Niedermeyer, J. and Julich, W.D. (2005). The pharmacological potential of mushrooms. eCAM. 2(3): 285– 299.

Madigan, M.T. and Martinko, J.M. (2003). Brock Biology of Microorganisms. Edited by Gary Carlson. Eleventh Edition London: Pearson Education LTD.

Morris, H.J., Llaurado, G., Belltran, Y., Llebeque, Y., Bermudez R. C., Garcia, N., Gaime- Perraud, I, and Moukha, S. (2017). The use of mushrooms in the Development of functional foods, drugs, and nutraceutical, in I. C. F. R. Ferreira, P. Morales and L. Barros (eds.), Wild Plants, Mushrooms and Nuts: Functional Food Properties and Applications, vol. 5, Wiley-Blackwell, UK, 1st edn, pp. 123–159.

Muszynska B., Lojewski, M., Rojowski, J., Opoka, W. and Sulkowska-Ziaja K. (2015). Natural products of relevance in the prevention and supportive treatment of depression, Psychiatria polska, 49(3): 435–453

Ngai, P. H. K., Zhao, Z. and Ng, T. B. (2005). Agrocybin, an antifungal peptide from the edible mushroom Agrocybe cylindracea, Peptides 26: 191-196.

Ozturk, M., Duru, M.E., Kivrak, S., Mercan-Dogan, N., Turkoglu, A. and Ozler, M.A. (2011). In vitro antioxidant, anticholinesterase and antimicrobial activity studies on three Agaricus species with fatty acid compositions and iron contents: A comparative study on the three most edible mushrooms, Food and Chemical Toxicology, 49: 1353–1360.

Paterson, R.R.M. and Lima, N. (2014). Biomedical effects of mushrooms with emphasis on pure compounds, Biomedicinal Journal, 37(6): 357–368

Petrović, J., Glamočlija, J., Stojković, D., Ćirić, A., Nikolić, M., Bukvički, D., Guerzoni, M.E. and Soković, M. (2013). Laetiporus sulphureus, edible mushroom from Serbia: Investigation on volatile compounds, in vitro antimicrobial activity and in situ control of A. flavus in tomato paste, Food and Chemical Toxicology, 59: 297-302.

Petrović, J., Papandreou, M., Glamočlija, J., Cirić, A., Baskakis, C., Proestos, C., Lamari, F., Zoumpoulakis, P. and Soković, M. (2014a). Different extraction methodologies and their influence on the bioactivity of the wild edible mushroom Laetiporus sulphureus (Bull.) Murrill., Food and Function, 5: 2948–2960.

Petrović, J., Glamočlija, J., Stojković, D., Nikolić, M., Ćirić, A., Fernandes, A., Ferreira, I.C.F.R. and Soković, M. (2014b). Bioactive composition, antimicrobial activities and the influence of Agrocybe aegerita (Brig.) Sing on certain quorum-sensing-regulated functions and biofilm formation by Pseudomonas aeruginosa. Food and Function, 5: 3296–303.

Petrović, J., Stojković, D., Reis, F.S, Barros, L., Glamočlija, J., Ćirić, A., Ferreira, C.F.R.I. and Soković, M. (2014c). Study on chemical, bioactive and food preserving properties of Laetiporus sulphureus (Bull.: Fr.) Murr., Food and Function 5: 1441-1451.

Reis, F. S., Stojković, D., Soković, M., Glamočlija, J., Ćirić, A., Barros, L. and Ferreira, C.F.R. I. (2012). Chemical characterization of Agaricus bohusii, antioxidant potential and antifungal preserving properties when incorporated in cream cheese, Food Research International, 48: 620-626.

Reis, F.S., Barros, L., Calhelha, R.C., Ćirić, A., van Griensven, L.J.L.D., Soković, M. and Ferreira, I.C.F.R. (2013). The methanolic extract of Cordyceps militaris (L.) Link fruiting body shows antioxidant, antibacterial, antifungal and antihuman tumor cell lines properties, Food and Chemical Toxicology, 62: 91–98.

Reis, F. S., Barreira, C. M. J., Calhelha, C. R., van Griensven, L.J.L.D., Ćirić, A., Glamočlija, J., Soković, M. and Ferreira, I.C.F.R. (2014a). Chemical characterization of the medicinal mushroom Phellinus linteus (Berkeley & Curtis) Teng and contribution of different fractions to its bioactivity. LWT - Food Science and Technology 58: 478-485

Reis, F. S., Stojković, D., Barros, L. Glamočlija, J., Ćirić, A., Soković, M., Martinis, A., Vasconcelos, H., Morales, H. and Ferreira, I.C.F.R. (2014b). Can Suillus granulatus (L.) Roussel be classified as a functional food? Food and Function 5: 2861-2869.

Rosa, L. H., Machado, K. M. G., Jacob, C. C., Capelari, M., Rosa, C. A. and Zani C. L. (2003). Screening of Brazilian Basidiomycetes for antimicrobial activity Memórias do Instituto Oswaldo Cruz, 98: 967-974.

Reverberi, M., Fabbri, A.A., Zjalic, S., Ricelli, A., Punelli, F. and Fanelli, C. (2005). Antioxidant enzymes stimulation in Aspergillus parasiticus by Lentinula edodes inhibits aflatoxin production, Applied Microbiology and Biotechnology, 69: 207-215.

Roberfroid, M.B. (1999). Concepts in functional foods: the case of inulin and oligofructose, Journal of Nutrition, 129:1398S-401S.

Roupas, P., Keogh, J., Noakes, N., Margetts. C. and Taylor, P. (2012). The role of edible mushrooms in health: Evaluation of the evidence, Journal of Functional Foods, 4: 687–709.

Ruthes, A.C., Carbonero, E.R., Córdova, M.M., Baggio, C.H., Santos, A.R.S., Sassaki, G.L., Cipriani, T.R., Gorin, P.A. and Iacomini, M. (2013). Lactarius rufus (1→3),(1→6)-β-d-glucans: structure, antinociceptive and anti-inflammatory effects, Carbohydrate Polymers, 94(1):129–36.

Smiderle, F.R., Sassaki, G.L., van Griensven, L.J.L.D. and Iacominia, M. (2013). Isolation and chemical characterization of a glucogalactomannan of the medicinal mushroom Cordyceps militaris, Carbohydrate Polymers, 97:74– 80.

Smiderle, F.R., Olsen, L.M., Carbonero, E.R., Baggio, C.H., Freitas, C.S., Marcon, R., Adair Santos, A.R.S., Gorin, Ph.A.J. and Iacomini, M. (2008). Anti-inflammatory and analgesic properties in a rodent model of a (1→3),(1→6)-linked β-glucan isolated from Pleurotus pulmonarius, European Journal of Pharmacology, 597(1–3):86–91.

Soboleva, A. I. U., Krasnopol’Skaia, L. M., Fedorova, G. B. and Katrukha, G. S. (2006). Antibiotic properties of the strains of the basidiomycete Lentinus edodes (Berk.) sing,. Antibiotiki Khimioterapiya, 51: 3–8.

Soković, M., Ćirić, A., Glamočlija, J. and Stojković, D. (2017). The Bioactive Properties of Mushrooms, in I.C.F.R. Ferreira, P. Morales and L. Barros (eds.), Wild Plants, Mushrooms and Nuts: Functional Food Properties and Applications, vol. 4, Wiley-Blackwell, UK, 1st edn, pp. 83–122.

Stadler, M., Hellwig, V., Mayer-Bartschmid, A., Denzer, D., Wiese, B. and Burkhardt, N. (2005). Novel analgesic triglycerides from cultures of Agaricus macrospores and other basidio¬mycetes as selective inhibitors of neuroly¬sin, Journal of Antibiotics, 58(12):775–786.

Stachowiak, B. and Reguła, J. (2012). Health-promoting potential of edible macromycetes under special consideration of polysaccharides: A review, European Food Research of Technology, 234: 369– 380.

Stojkovic, D., Reis, F.S., Ferreira, I.C.F.R., Barros, L., Glamoclija, J., Ciric, A., Nikolic, M., Stevic, T., Giveli, A. and Sokovic, M., (2013a). Tirmania pinoyi: Chemical composition, in vitro antioxidant and antibacterial activities and in situ control of Staphylococcus aureus in chicken soup, Food Research International, 53: 56–62

Stojkovic, D., Reis, F. S., Barros, L. Glamoclija, J., Ciric, A., van Griensven, L., Sokovic, M. and Ferreira, I.C.F.R. (2013b). Nutrients and non-nutrients composition and bioactivity of wild and cultivated Coprinus comatus (O.F.Müll.) Pers., Food and Chemical Toxicology, 59: 289-296.

Stojković, D., Ćirić, A., Reis, F. S., Barros, L., Glamočlija, J., Ferreira, I.C.F.R. and Soković, M. (2013c). Chemical constituents and biological activity of Boletus aereus Bull. Growing wild in Serbia: In vitro and in situ assays. Eurofoodchem XVII, Book of Abstracts, 231.

Stojkovic, D., Reis, F. S., Glamoclija, J. Ćirić, A., Barros, L., van Griensven, L.JLD, Ferreira, C.F.R.I. and Soković, M. (2014a). Cultivated strains of Agaricus bisporus and A. brasiliensis: chemical characterization and evaluation of antioxidant and antimicrobial properties for thefinal healthy product–natural preservatives in yoghurt, Food and Function 5: 1602-1612.

Stojkovic, D., Barros, L., Calhelha, C. R., Glamoclija, J., Ciric, A., van Griensven, L., Sokovic, M. and Ferreira, I.C.F.R. (2014b). A detailed comparative study between chemical and bioactive properties of Ganoderma lucidum from different origins, International Journal of Food Sciences and Nutrition, 65: 42-47.

Stojković, D.S., Kovačević-Grujičić, N., Reis, F.S., Davidović, S., Barros, L., Popović, J., Petrović, I., Pavić, A., Glamočlija, J., Ćirić, A., Stevanović, M., Ferreira, I.C.F.R. and Soković, M., (2017). Chemical composition of the mushroom Meripilus giganteus Karst. and bioactive properties of its methanolic extract, LWT - Food Science and Technology, 79: 454-462.

Schwan, W.R. (2012). Mushrooms: an untapped reservoir for nutraceutical antibacterial applications and antibacterial compounds, Current Topics in Nutraceutical Research 10(1):75–82.

Valverde, M.E., Hernández-Pérez, T. and Paredes-López, O. (2015). Edible mushrooms: Improving human health and promoting quality life, International Journal of Microbiology, Article ID 376387, 14 pp.

van Griensven, L. J. L. D., Smiderle, F.R., Baggio, C.H., Henquet, M. and Verhoeven, H.A. (2017). Mushroom extracts suppress pain: a critical approach. The 9 th Internationall Medicinal Mushrooms Conference, 24-28 september 2017, Palemo Italy. Book of abstract, 9.

Ventola, C.L. (2015). The Antibiotic Resistance Crisis Part 1: Causes and Threats, Pharmacology and Therapeutics, 40: 277–283.

Venturini, N., Muniz, P., Bícego, M.C., Martins, C.C. and Tommasi, L.R. (2008). Petroleum contamination impact on macrobenthic communities under the influence of an oil refinery: integrating chemical and biological multivariate data, Estuarine Coastal and Shelf Science, 78(3):457–467.

Wang, M., Meng, X.Y., Yang, R.L., Qin, T., Wang, X.Y., Zhang, K.Y., Fei, C.Z., Li, Y., Hu, Y.L. and Xue, F.Q. (2012). Cordyceps militaris polysaccharides can enhance the immunity and antioxidation activity in immunosuppressed mice, Carbohydrate Polymers, 89: 461-466.

Wang, M., Meng, X.Y., Yang, R. Le, Qin, T., Wang, X.Y., Zhang, K.Y., Fei, C.Z., Li, Y., Zahid, S., Udenigwe, C.C., Ata, A., Eze, M.O., Segstro, E.P. and Holloway, P. (2006). New bioactive natural products from Coprinus micaceus. Natural Product Research, 20(14):1283–1289.

Wang, Y., Bao, L., Yang, X., Li, L., Li, S., Gao, H., Yao, X.S., Wen, H., and Liu, H.W. (2012). Bioactive sesquiterpenoids from the solid culture of the edible mushroom Flammulina velutipes growing on cooked rice, Food Chemistry, 132: 1346-1353.

Wang, H., Liu, Y. and Han, C. (2013). The analgesic effect of several edible mushrooms. OA Alternative Medicine 1(3):22.

WHO (2001). The WHO Global Strategy for Containment of Antimicrobial Resistance. WHO/CDS/CSR/DRS/2001.2 Switzerland.

Wasser, S.P. (2010). Medicinal mushroom science: History, current status, future trends, and unsolved problems, International Journal of Medicinal Mushrooms, 12:1‑16.

Wasser, S.P. (2011). Current findings, future trends, and unsolved problems in studies of medicinal mushrooms, Applied Microbiology and Biotechnology, 89: 1323–1333.

Wasser, S.P. (2014). Medicinal Mushroom Science: Current Perspectives, Advances, Evidences, and Challenges, Biomedical Journal, 37:345‑356.

Zain, M.E. (2011). Impact of mycotoxins on humans and animals, Journal of Saudi Chemical Society, 15: 129-144.

Zjalic, S., Reverberi, M., Ricelli, A., Granito, V.M., Fanelli, C. and Fabbri, A.A. (2006). Trametes versicolor: A possible tool for aflatoxin control, International Journal of Food Microbiology, 107: 243-249


  • There are currently no refbacks.

Copyright (c) 2017 Jasmina Glamoclija, Marina Sokovic

ISSN 0455-6224 (Print)
ISSN 2560-3965 (Online)

Creative Commons License Except where otherwise noted, the content on this site is licensed under a Creative Commons Attribution 4.0 International License.