Microencapsulation methods for plants biologically active compounds - a review

Jelena Mudrić, Svetlana Ibrić, Jelena Đuriš

DOI: http://dx.doi.org/10.5937/leksir1838062M


Biologically active compounds from plants have attracted great interest due to their affordability, effectiveness and low toxicity. Herbal extracts provide an infinite resource of raw materials for pharmaceutical, cosmetic and food industry. Unfortunately, use of the valuable natural compounds can be limited by their low bioavailability, volatilization of active compounds, sensitivity to the temperature, oxidation and UV light, in vivo instability, as well as unpleasant taste. One of the potential strategies to overcome these issues is microencapsulation of the biologically active ingredients. In this review, preparation, applications and limitations of the most popular techniques for microencapsulation, such as spray drying, fluid bed coating, encapsulation using supercritical fluids, freeze drying, ionic gelation, emulsification-solvent removal methods and formulation of liposomes, were discussed. Also, microparticles properties produced by presented microencapsulation methods were interpreted.


herbal extracts; medicinal plants; microencapsulation; polyphenols; microparticles; antioxidants.

Full Text:



Abd Manaf, M., Jai, J., Raslan, R., Subuki, I., & Mustapa, A. N. (2015). Microencapsulation Methods of Volatile Essential Oils-A Review. In Advanced Materials Research (Vol. 1113, pp. 679-683). Trans Tech Publications.

Bhattaram, V. A., Graefe, U., Kohlert, C., Veit, M., & Derendorf, H. (2002). Pharmacokinetics and bioavailability of herbal medicinal products. Phytomedicine, 9, 1-33.

Bozzuto, G., & Molinari, A. (2015). Liposomes as nanomedical devices. International journal of nanomedicine, 10, 975.

Cocero, M. J., Martín, Á., Mattea, F., & Varona, S. (2009). Encapsulation and co-precipitation processes with supercritical fluids: fundamentals and applications. The Journal of Supercritical Fluids, 47(3), 546-555.

Coronel-Aguilera, C. P., & San Martín-González, M. F. (2015). Encapsulation of spray dried β-carotene emulsion by fluidized bed coating technology. LWT-Food Science and Technology, 62(1), 187-193.

Ćujić, N., Kundaković, T., & Šavikin, K. (2017). Anthocyanins–chemistry and biological activity. Lekovite sirovine, 33, 19-37.

Desai, K. G. H., & Jin Park, H. (2005). Recent developments in microencapsulation of food ingredients. Drying technology, 23(7), 1361-1394.

Dias, D. R., Botrel, D. A., Fernandes, R. V. D. B., & Borges, S. V. (2017). Encapsulation as a tool for bioprocessing of functional foods. Current Opinion in Food Science, 13, 31-37.

Dube, A., Ng, K., Nicolazzo, J. A., & Larson, I. (2010). Effective use of reducing agents and nanoparticle encapsulation in stabilizing catechins in alkaline solution. Food Chemistry, 122(3), 662-667.

Fäldt, P., & Bergenståhl, B. (1996). Changes in surface composition of spray-dried food powders due to lactose crystallization. LWT-Food Science and Technology, 29(5-6), 438-446.

Fang, Z., & Bhandari, B. (2012). Spray drying, freeze drying and related processes for food ingredient and nutraceutical encapsulation. In Encapsulation technologies and delivery systems for food ingredients and nutraceuticals (pp. 73-109).

Florence, A. T., & Hussain, N. (2001). Transcytosis of nanoparticle and dendrimer delivery systems: evolving vistas. Advanced drug delivery reviews, 50, S69-S89.

Gibbs, F. Selim Kermasha, Inteaz Alli, Catherine N. Mulligan, B. (1999). Encapsulation in the food industry: a review. International journal of food sciences and nutrition, 50(3), 213-224.

Guignon, B., Duquenoy, A., & Dumoulin, E. D. (2002). Fluid bed encapsulation of particles: principles and practice. Drying Technology, 20(2), 419-447.

Laine, P., Kylli, P., Heinonen, M., & Jouppila, K. (2008). Storage stability of microencapsulated cloudberry (Rubus chamaemorus) phenolics. Journal of Agricultural and Food Chemistry, 56(23), 11251-11261.

Lakkis, J. M. (2016). Encapsulation and controlled release technologies in food systems. John Wiley & Sons.

Lu, W., Kelly, A. L., & Miao, S. (2016). Emulsion-based encapsulation and delivery systems for polyphenols. Trends in Food Science & Technology, 47, 1-9.

Manu, J. S., Ganesh, L. B., Manoj, B. M., Randhir, C. B., Shashikant, B. D., & Chirag, S. B. (2012). Spray drying in pharmaceutical industry: A review. Research Journal of Pharmaceutical Dosage Forms and Technology, 4(2), II.

Martín, Á., Varona, S., Navarrete, A., & Cocero, M. J. (2010). Encapsulation and co-precipitation processes with supercritical fluids: applications with essential oils. The Open Chemical Engineering Journal, 4(1).

Medarević, Đ., Ibrić, S., Đuriš, J., & Đurić, Z (2013). Primena čvrstih disperzija u farmaceutskoj tehnologiji: postupci izrade i metode karakterizacije. Arhiv za farmaciju, 63, 473-493.

Medda, S., Mukhopadhyay, S., & Basu, M. K. (1999). Evaluation of the in-vivo activity and toxicity of amarogentin, an antileishmanial agent, in both liposomal and niosomal forms. Journal of Antimicrobial chemotherapy, 44(6), 791-794.

Miletić, T. M. (2013). Karakterizacija i modelovanje procesa sušenja raspršivanjem u razvoju čvrstih farmaceutskih oblika primenom koncepta dizajniranja kvaliteta (Doktorska disertacija, Univerzitet u Beogradu, Farmaceutski fakultet).

Munin, A., & Edwards-Lévy, F. (2011). Encapsulation of natural polyphenolic compounds; a review. Pharmaceutics, 3(4), 793-829.

Nori, M. P., Favaro-Trindade, C. S., de Alencar, S. M., Thomazini, M., de Camargo Balieiro, J. C., & Castillo, C. J. C. (2011). Microencapsulation of propolis extract by complex coacervation. LWT-Food Science and Technology, 44(2), 429-435.

Park K, Yeo Y. Microencapsulation Technology. In: Encyclopedia of Pharmaceutical Technology 3rd ed , Swarbrick J, Ed. Informa Healthcare, New York, 2007;2315-27.

Patil, Y. P., & Jadhav, S. (2014). Novel methods for liposome preparation. Chemistry and physics of lipids, 177, 8-18.

Poshadri, A., & Aparna, K. (2010). Microencapsulation technology: a review. Journal of Research ANGRAU, 38(1), 86-102.

Rey, L., & May, J. C. (2004). Freeze-Drying/Lyophilization Of Pharmaceutical & Biological Products, Revised and Expanded. CRC Press.

Rocha‐Guzmán, N. E., Gallegos‐Infante, J. A., González‐Laredo, R. F., Harte, F., Medina‐Torres, L., Ochoa‐Martínez, L. A., & Soto‐García, M. (2010). Effect of high‐pressure homogenization on the physical and antioxidant properties of Quercus resinosa infusions encapsulated by spray‐drying. Journal of food science, 75(5), N57-N61.

Shao, J., Li, X., Lu, X., Jiang, C., Hu, Y., Li, Q., ... & Fu, Z. (2009). Enhanced growth inhibition effect of resveratrol incorporated into biodegradable nanoparticles against glioma cells is mediated by the induction of intracellular reactive oxygen species levels. Colloids and Surfaces B: Biointerfaces, 72(1), 40-47.

Silva, E. K., & Meireles, M. A. A. (2014). Encapsulation of food compounds using supercritical technologies: applications of supercritical carbon dioxide as an antisolvent. Food and Public Health, 4(5), 247-258.

Singh, M. N., Hemant, K. S. Y., Ram, M., & Shivakumar, H. G. (2010). Microencapsulation: A promising technique for controlled drug delivery. Research in pharmaceutical sciences, 5(2), 65.

Snyder, H. E., & Lechuga-Ballesteros, D. (2008). Spray drying: theory and pharmaceutical applications. Pharmaceutical Dosage Forms: Tablets, 1, 227-260.

Sosa, M. V., Rodríguez-Rojo, S., Mattea, F., Cismondi, M., & Cocero, M. J. (2011). Green tea encapsulation by means of high pressure antisolvent coprecipitation. The Journal of Supercritical Fluids, 56(3), 304-311.

Sovilj, V. J., Dokic, P. P., & Mesinkovska, D. J. (2000). Investigations of the microencapsulation in the system anionic polyelectrolyte cationic surfactant. Acta Periodica Technologica (Yugoslavia).

Suri S., Ruan G., Winter J., Schmidt C. (2013). Microparticles and nanoparticles, Classes of Materials Used in Medicine, Biomaterials Science, 3rd Edition, Elsevier, 360-388.

Tang, X. C., & Pikal, M. J. (2004). Design of freeze-drying processes for pharmaceuticals: practical advice. Pharmaceutical research, 21(2), 191-200.

Tomašik A., (2018). Sušenje i ekstrakcija lista sremuša (Allium ursinum L.) u cilјu dobijanja funkcionalnih proizvoda sa bioaktivnim potencijalom. (Doktorska disertacija, Tenološki fakultet, Univerzitet u Novom Sadu).

Zuidam, N. J., & Shimoni, E. (2010). Overview of microencapsulates for use in food products or processes and methods to make them. In Encapsulation technologies for active food ingredients and food processing (pp. 3-29). Springer, New York, NY.


  • There are currently no refbacks.

Copyright (c) 2018 Jelena Mudrić

ISSN 0455-6224 (Print)
ISSN 2560-3965 (Online)

Creative Commons License Except where otherwise noted, the content on this site is licensed under a Creative Commons Attribution 4.0 International License.