×
Home Current Archive Editorial board
News Contact
Research Article

In vitro evaluation of antioxidant, antineurodegenerative and antidiabetic activities of Ocimum basilicum L., Laurus nobilis L. leaves and Citrus reticulata Blanco peel extracts

By
Sonja Duletić-Laušević ,
Sonja Duletić-Laušević

Faculty of Biology, Institute of Botany and Botanical Garden “Jevremovac”, University of Belgrade, Belgrade, Serbia

Mariana Oalđe ,
Mariana Oalđe
Contact Mariana Oalđe

Faculty of Biology, Institute of Botany and Botanical Garden “Jevremovac”, University of Belgrade, Belgrade, Serbia

Ana Alimpić-Aradski
Ana Alimpić-Aradski

Faculty of Biology, Institute of Botany and Botanical Garden “Jevremovac”, University of Belgrade, Belgrade, Serbia

Abstract

<i>Ocimum basilicum<i> (sweet basil) and <i>Laurus nobilis</i> (bay leaves or laurel) have been used in traditional medicine for centuries, and also extensively employed as spices for adding aroma and flavor to various food products. <i>Citrus reticulata</i>  (mandarin) is mainly used in food industry for juice production, while its peel as main byproduct contains high concentration of valuable substances. The samples were collected in Lastva Grbaljska (Montenegrin coast) and purchased from the market. Since the oxidative stress results in development of numerous diseases, among them neurodegeneration and diabetes, the antioxidant activity, antineurodegenerative and antidiabetic activities were analyzed, aiming to compare potential of plants cultivated under natural conditions and commercially purchased from the market, as well as to compare the effect of different solvents applied in the extraction process. Water, methanol and acetone extracts of leaves and peel were tested by DPPH and total reducing power (TRP) methods for determination of antioxidant activity, and by acetylcholinesterase (AChE) and α-glucosidase inhibition assays for analyzing the other activities. Total phenolic (TPC) and flavonoid (TFC) contents were also determined. The acetonic extract of <i>L. nobilis</i> from Lastva showed the highest TPC, DPPH, TRP, and α-glucosidase inhibition, while water extract of commercial <i>L. nobilis</i> exhibited the highest AChE inhibition. The leaves of <i>L. nobilis</i> are demonstrated to be promising antioxidant, antineurodegenerative and antidiabetic agent.


 

References

Aafreen, M. M., Geetha, R. V., & Lakshmi, T. (2019). Evaluation of anti-inflammatory action of Laurus nobilis - an in vitro study. International Journal of Research in Pharmaceutical Sciences, 10(2), 1209–1213.
Ahmed, A. F., Attia, F. A., Liu, Z., Li, C., Wei, J., & Kang, W. (2019). Antioxidant activity and total phenolic content of essential oils and extracts of Sweet basil (Ocimum basilicum L.) plants. Food Science and Human Wellness.
Akram, M., & Nawaz, A. (2017). Effects of medicinal plants on Alzheimer’s disease and memory deficits. Neural Regeneration Research, 12(4), 660.
Barla, A., Topçu, G., Öksüz, S., Tümen, G., & Kingston, D. G. I. (2007). Identification of cytotoxic sesquiterpenes from Laurus nobilis L. Food Chemistry, 104(4), 1478–1484.
Bazzari, A. H., & Bazzari, F. H. (2018). Medicinal plants for Alzheimer’s disease: An updated review. Journal of Medicinal Plants, 6(2), 81–85.
Blois, M. S. (1958). Antioxidant determinations by the use of a stable free radical. Nature, 181(4617), 1199.
Bomma, M., Okafor, F., Mentreddy, S. R., Nyochembeng, L., Setzer, W., & Vogler, B. (2018). Comparison of methods of extraction and antimicrobial activity of six Ocimum species against human pathogens. Journal of Agriculture and Life Sciences, 5(2), 61–70.
Chen, X. T., Jiang, D. Q., Chen, F. F., & Yuan, K. (2012). Investigation of active components and antioxidant activities in peel and pulp extracts of Citrus reticulata Blanco cv. Suavissima Fruit. Advanced Materials Research, 343, 1098–1102.
Dias, M. I., Barreira, J., Calhelha, R. C., Queiroz, M. J. R., Oliveira, M. B. P. P., Soković, M., & Ferreira, I. C. (2014). Two-dimensional PCA highlights the differentiated antitumor and antimicrobial activity of methanolic and aqueous extracts of Laurus nobilis L. from different origins. BioMed Research International Article, ID 520464, 1–10.
El-Beshbishy, H. A., & Bahashwan, S. A. (2012). Hypoglycemic effect of basil (Ocimum basilicum) aqueous extract is mediated through inhibition of α-glucosidase and α-amylase activities: an in vitro study. Toxicology and Industrial Health, 28(1), 42–50.
El-Khadragy, M. F., Al-Olayan, E. M., & Abdel Moneim, A. E. (2014). Neuroprotective effects of Citrus reticulata in scopolamine-induced dementia oxidative stress in rats. CNS & Neurological Disorders - Drug Targets, 13(4), 684–690.
Fadaka, A. O., Ajiboye, B. O., Adewale, I., Ojo, O. A., Oyinloye, B. E., & Okesola, M. A. (2019). Significance of antioxidants in the treatment and prevention of neurodegenerative diseases. The Journal of Phytopharmacology, 8(2), 75–83.
Fayek, N. M., El-Shazly, A. H., Abdel-Monem, A. R., Moussa, M. Y., Abd-Elwahab, S. M., & El-Tanbouly, N. D. (2017). Comparative study of the hypocholesterolemic, antidiabetic effects of four agro-waste Citrus peels cultivars and their HPLC standardization. Revista Brasileira de Farmacognosia, 27(4), 488–494.
Ferreira, A., Proença, C., Serralheiro, M. L. M., & Araújo, M. E. M. (2006). The in vitro screening for acetylcholinesterase inhibition and antioxidant activity of medicinal plants from Portugal. Journal of Ethnopharmacology, 108(1), 31–37.
Garg, S. N., Siddiqui, M. S., & Agarwal, S. K. (1992). New fatty-acid esters and hydroxy ketones from fruits of Laurus nobilis. Journal of Natural Products, 55, 1315–1319.
Grayer, R., Bryan, S. E., Veitch, N. C., Goldstone, F. J., Paton, A., & Wollenweber, E. (1996). External flavones in sweet basil, Ocimum basilicum, and related taxa. Phytochemistry, 43(5), 1041–1047.
Hamid, A. A., Aiyelaagbe, O. O., Usman, L. A., Ameen, O. M., & Lawal, A. (2010). Antioxidants: Its medicinal and pharmacological applications. African Journal of Pure and Applied Chemistry, 4(8), 142–151.
Haniti, M. Z., Juriyati, J., Chan, K. M., & Norazrina, A. (2018). A brief review of potential neuroprotective roles of the culinary herb Ocimum basilicum. MANALI Medicine & Health, 13(2), 3–19.
Indrianingsih, A. W., Tachibana, S., & Itoh, K. (2015). In vitro evaluation of antioxidant and α-glucosidase inhibitory assay of several tropical and subtropical plants. Procedia Environmental Sciences, 28, 639–648.
Javanmardi, J., Stushnoff, C., Locke, E., & Vivanco, J. M. (2003). Antioxidant activity and total phenolic content of Iranian Ocimum accessions. Food Chemistry, 83(4), 547–550.
Kalra, S. (2014). Alpha glucosidase inhibitors. The Journal of the Pakistan Medical Association, 64(4), 474–476.
Kaurinovic, B., Popovic, M., Vlaisavljevic, S., & Trivic, S. (2011). Antioxidant capacity of Ocimum basilicum L. And Origanum Vulgare L. Extracts. Molecules, 16(9), 7401–7414.
Kazeem, M. I., Ashafa, A. O. T., & Nafiu, M. O. (2015). Biological activities of three Nigerian spices – Laurus nobilis Linn, Murraya koenigii (L) Spreng and Thymus vulgaris Linn. Tropical Journal of Pharmaceutical Research, 14(12), 2255–2261.
Kivrak, Ş., Göktürk, T., & Kivrak, İ. (2017). Assessment of volatile oil composition, phenolics and antioxidant activity of Bay (Laurus nobilis) leaf and usage in cosmetic applications. International Journal of Secondary Metabolite, 4(2), 148–161.
Malapermal, V., Botha, I., Krishna, S. B. N., & Mbatha, J. N. (2017). Enhancing antidiabetic and antimicrobial performance of Ocimum basilicum, and Ocimum sanctum (L.) using silver nanoparticles. Saudi Journal of Biological Sciences, 24(6), 1294–1305.
Muñiz-Márquez, D. B., Rodríguez, R., Balagurusamy, N., Carrillo, M. L., Belmares, R., Contreras, J. C., Nevárez, G. V., & Aguilar, C. N. (2014). Phenolic content and antioxidant capacity of extracts of Laurus nobilis L., Coriandrum sativum L. and Amaranthus hybridus L. CyTA – Journal of Food, 12(3), 271–276.
Nasri, H., Shirzad, H., Baradaran, A., & Rafieian, M. (2015). Antioxidant plants and diabetes mellitus. Journal of Research in Medical Sciences, 20(5), 491–502.
Nogata, Y., Sakamoto, K., Shiratsuchi, H., Ishii, T., Yano, M., & Ohta, H. (2006). Flavonoid composition of fruit tissues of citrus species. Bioscience, Biotechnology, and Biochemistry, 70(1), 178–192.
Oboh, G., & Ademosun, A. O. (2011). Shaddock peels (Citrus maxima) phenolic extracts inhibit α-amylase, α-glucosidase and angiotensin I-converting enzyme activities: A nutraceutical approach to diabetes management. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 5(3), 148–152.
Pacifico, S., Gallicchio, M., Lorenz, P., Duckstein, S. M., Potenza, N., Galasso, S., Marciano, S., Fiorentino, A., Stintzing, F. C., & P, M. (2014). Neuroprotective potential of Laurus nobilis antioxidant polyphenol-enriched leaf extracts. Chemical Research in Toxicology, 27, 611 626.
Padilla-Camberos, E., Lazcano-Díaz, E., Flores-Fernandez, J. M., Owolabi, M. S., Allen, K., & Villanueva-Rodríguez, S. (2014). Evaluation of the inhibition of carbohydrate hydrolyzing enzymes, the antioxidant activity, and the polyphenolic content of Citrus limetta peel extract. The Scientific World Journal Article, ID 121760, 1–4.
Park, Y. K., Koo, M. H., Ikegaki, M., & Contado, J. L. (1997). Comparison of the flavonoid aglycone contents of Apis mellifera propolis from various regions of Brazil. Arquivos de Biologia e Tecnologia, 40, 97–106.
Purushothaman, B., Prasanna Srinivasan, R., Suganthi, P., Ranganathan, B., Gimbun, J., & Shanmugam, K. (2018). A comprehensive review on Ocimum basilicum. Journal of Natural Remedies, 18(3), 71–85.
Safdar, M. N., Kausar, T., Jabbar, S., Mumtaz, A., Ahad, K., & Saddozai, A. A. (2017). Extraction and quantification of polyphenols from kinnow (Citrus reticulate L.) peel using ultrasound and maceration techniques. Journal of Food and Drug Analysis, 25(3), 488–500.
Sarahroodi, S., Esmaeili, S., Mikaili, P., Hemmati, Z., & Saberi, Y. (2012). The effects of green Ocimum basilicum hydroalcoholic extract on retention and retrieval of memory in mice. Ancient Science of Life, 31(4), 185–189.
Senol, F. S., Ankli, A., Reich, E., & Orhan, I. E. (2016). HPTLC fingerprinting and cholinesterase inhibitory and metal-chelating capacity of various Citrus cultivars and Olea europaea. Food Technology and Biotechnology, 54(3), 275–281.
Singleton, V. L., & Rossi, J. A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16, 144–158.
Taroq, A., El Kamari, F., Aouam, I., El Atki, Y., Lyoussi, B., & Abdellaoui, A. (2018). Antioxidant activities and total phenolic and flavonoid content variations of leaf extracts of Laurus nobilis L. from Morocco. Asian Journal of Pharmaceutical and Clinical Research, 11(12), 540–543.
Taylor, R. (1990). Interpretation of the correlation coefficient: A Basic Review. Journal of Diagnostic Medical Sonography, 6(1), 35–39.
Toth, C. (2014). Diabetes and neurodegeneration in the brain. In Diabetes and the nervous system (pp. 489–511).
Trivellini, A., Lucchesini, M., Maggini, R., Mosadegh, H., Villamarin, T. S. S., Vernieri, P., Mensuali-Sodi, A., & Pardossi, A. (2016). Lamiaceae phenols as multifaceted compounds: bioactivity, industrial prospects and role of “positive-stress.” Industrial Crops and Products, 83, 241–254.
Tumbas, V. T., Ćetković, G. S., Djilas, S. M., Čanadanović-Brunet, J. M., Vulić, J. J., Knez, Ž., & Škerget, M. (2010). Antioxidant activity of mandarin (Citrus reticulata) peel. Acta Periodica Technologica, 41, 195–203.
Tusevski, O., Kostovska, A., Iloska, A., Trajkovska, L., & Simic, S. G. (2014). Phenolic production and antioxidant properties of some Macedonian medicinal plants. Central European Journal of Biology, 9(9), 888–900.
Wan, L. S., Min, Q. X., Wang, Y. L., Yue, Y. D., & Chen, J. C. (2013). Xanthone glycoside constituents of Swertia kouitchensis with α-glucosidase inhibitory activity. Journal of Natural Products, 76(7), 1248–1253.
Wojdyło, A., Oszmiański, J., & Czemerys, R. (2007). Antioxidant activity and phenolic compounds in 32 selected herbs. Food Chemistry, 105, 940–949.
Xu, G. H., Chen, J. C., Liu, D. H., Zhang, Y. H., Jiang, P., & Ye, X. Q. (2008). Minerals, phenolic compounds, and antioxidant capacity of Citrus peel extract by hot water. Journal of Food Science, 73(1), 11–18.
Xu, G. H., Ye, X. Q., Chen, J. C., & Liu, D. H. (2007). Effect of heat treatment on the phenolic compounds and antioxidant capacity of citrus peel extract. Journal of Agricultural and Food Chemistry, 55(2), 330–335.
Zahoor, S., Anwar, F., Mehmood, T., Sultana, B., & Qadir, R. (2016). Variation in antioxidant attributes and individual phenolics of Citrus fruit peels in relation to different species and extraction solvents. Journal of the Chilean Chemical Society, 61(2), 2884–2889.
Zakaria, Z., Aziz, R., Lachimanan, Y. L., Sreenivasan, S., & Rathinam, X. (2008). Antioxidant activity of Coleus blumei, Orthosiphon stamineus, Ocimum basilicum and Mentha arvensis from Lamiaceae family. International Journal of Natural and Engineering Sciences, 2(1), 93–95.
Zhang, H., Yang, Y. F., & Zhou, Z. Q. (2018). Phenolic and flavonoid contents of mandarin (Citrus reticulata Blanco) fruit tissues and their antioxidant capacity as evaluated by DPPH and ABTS methods. Journal of Integrative Agriculture, 17(1), 256–263.
Zhang, Y., Sun, Y., Xi, W., Shen, Y., Qiao, L., Zhong, L., Ye, X., & Zhou, Z. (2014). Phenolic compositions and antioxidant capacities of Chinese wild mandarin (Citrus reticulata Blanco) fruits. Food Chemistry, 145, 674–680.
(1961). A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical Pharmacology, 7(2), 88–95.

Citation

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

Article metrics

Google scholar: See link

The statements, opinions and data contained in the journal are solely those of the individual authors and contributors and not of the publisher and the editor(s). We stay neutral with regard to jurisdictional claims in published maps and institutional affiliations.